HYDROCARBON SPECIFICITY OVER CU/ZSM-5 AND CO/ZSM-5 CATALYSTS IN THE SCR OF NO T. Beutel, B. Adelman, G.-D. Lei and W.M.H. Sachtler V.N. Ipatieff Laboratory Northwestern University Evanston, IL 60208-3000 Keywords: Cu/ZSM-5, Co/ZSM-5, NO_x reduction, Adsorbed NO_x, H-Abstraction #### 1. Introduction A large variety of catalysts has been proven to be active in the selective catalytic reduction of NO by hydrocarbons. Although $O_{2,gas}$ acts as a nonselective competitor for the direct combustion of hydrocarbons, the addition of O_2 enhances the rate of NO reduction¹. This enhancement has been attributed to the oxidation of NO which leads not to $NO_{2,gas}$ but rather to adsorbed nitrogen oxide complexes (NO_{y} groups). Although the reactivity of these NO_y groups has not been fully investigated, there are literature data to suggest that the hydrocarbon must first be activated. Cant and coworkers² observed a first order isotope effect when CH₄ and CD₄ were used as reductants. The authors concluded that H-abstraction was the rate limiting step for both N₂ and CO₂ formation. In general, the chemistry for the selective reduction of NO by hydrocarbons may be comparable to the chemistry of a cold flame³. For these reactions, H-abstraction is the first step in hydrocarbon activation. It is therefore plausible that the NO_y groups are the sites responsible for the H-abstraction reaction⁴. The role of NO_y groups on Cu/ZSM-5 and Co/ZSM-5 has been investigated by FTIR spectroscopy to determine their thermal stability and reactivity towards C_3H_8 and CH_4 . The nature of the evolved gases has been analyzed in separate experiments by mass spectroscopy. ## 2. Experimental O2 flow. #### 2.1. Catalyst preparation Cu/ZSM-5 and Co/ZSM-5 catalysts were prepared via ion exchange at room temperature (r.t.) using a $Cu(OAc)_2$ or $Co(NO_3)_2$ solution with Na/ZSM-5 (UOP lot #13023-60). Elemental analysis via inductively coupled plasma spectroscopy gave the following data: Cu/Al = 0.56, Si/Al = 18, Na/Al = 0.0; Co/Al = 0.48, Si/Al = 18, Na/Al = 0.34. Prior to IR or MS experiments the samples were calcined for 2 hrs at 500°C in an UHP 2.2. FTIR spectroscopy Spectra were collected on a Nicolet 60SX FTIR spectrometer equipped with a liquid N₂ cooled detector. The samples were pressed into self-supporting wafers and mounted into a pyrex glass cell sealed with NaCl windows. Spectra were taken at r.t. accumulating 50 scans at a spectral resolution of 1cm⁻¹. The samples could be pretreated *in situ* in a gas flow at temperatures up to 500° C in a heating zone attached to the glass cell. After in situ calcination in UHP O_2 , as described previously, the sample was purged at r.t. for 1 hr with 25 ml min⁻¹ UHP He then saturated in a stream of NO (0.45%) and O_2 (75%) with a He balance. For the reduction studies the samples were heated to the reaction temperatures at 6°/min in flowing C_3H_8 or CH_4 (0.25% hydrocarbon in He) at a total flow rate of 30 ml min⁻¹. Before cooling to r.t. the sample was purged for 10 min with He. Spectra were taken at r.t. ## 2.2. MS analysis For the analysis of released gases, 400 mg of sample were calcined *ex situ* to 500°C in UHP O₂ and then saturated with NO₂ (0.5%, balance He) at r.t. The reactor was transferred to a glass, recirculating manifold equipped with a Dycor Quadrupole Gas Analyzer. Prior to the reduction experiments the sample was heated *in vacuo* to 225°C for Cu/ZSM-5 and 150°C for Co/ZSM-5. A sample loop was then filled with a known amount of hydrocarbon; evolved gases were allowed to recirculate over the sample. The signal intensities were normalized by an Ar standard. A secondary loop to the manifold was charged with 3 g of 5 wt.% Ni/SiO₂ pre-reduced at 400°C. This loop was sealed from the reactor and manifold during the experiment and was used to remove CO from the post-reaction analysis of the evolved gases. #### 3. Results ## 3.1. FTIR spectroscopy Fig. 1A shows the FTIR spectra of Cu/ZSM-5 after the exposure to NO + O₂ at r.t. and subsequent purge at 200°C in He. There are three distinct bands at 1628, 1594 and 1572 cm⁻¹ which are attributed to Cu²⁺ bonded nitro and nitrate groups. These NO_y groups are stable in He at 200°C for over 14 hrs. However in C₃H₈ all band intensities decrease. A plot of the band intensities, measured as peak heights and normalized by their initial intensities, is presented in Fig1A'. The rates of reaction of the three NO_y groups are different. One of the nitrate groups (1594 cm⁻¹) reacts fast, whereas the other nitrate group (1572 cm⁻¹) reacts sluggishly. The reactivity of the nitro group (1628 cm⁻¹) exhibits an induction period of 20 min after which it is consumed at a comparable rate to the nitrate group at 1594 cm⁻¹. In CH₄, the Cu•NO_y groups are not depleted at temperatures below the thermal decomposition. In the case of Co/ZSM-5 the main feature after NO + O₂ saturation is shown in Fig 1B. It consists of two broad bands at 1526 and 1310 cm⁻¹. The former band is ascribed to a Co²⁺•ONO complex. The Co•NO_y adsorption complex is less stable than the Cu•NO_y. Approximately 60% of the Co•NO_y adsorbates are desorbed after thermal treatment at 150°C for 14 hrs. The reactivity of the remaining NO_y groups with C₃H₈ at 150°C is shown in Fig.1B'. The normalized intensities of the adsorption band at 1526 cm⁻¹ are plotted in Fig.1B' for propane and methane. Unlike Cu•NO_y, Co•NO_y reacts with CH₄. ## 3.2. MS spectroscopy Fig.2 shows the evolution of N₂ when Cu/ZMS-5 or Co/ZSM-5 samples, pre-saturated with NO₂, are exposed to C₃H₈ or CH₄ at reaction temperatures of 225°C for Cu/ZSM-5 and of 150°C for Co/ZSM-5. When C_3H_8 is used as the reductant, N_2 evolution from Cu/ZSM-5 is rapid but terminates after 30 min exposure to hydrocarbon. N_2 evolution from Co/ZSM-5 proceeds at a slower rate; an increase in N_2 is still detected after 90 min exposure to hydrocarbon. When CH_4 is used as the reductant no reaction occurs over Cu/ZSM-5, but over Co/ZSM-5 N_2 evolution is detected. Co • NO_y reaction with CH_4 is slower than $Co • NO_y$ reaction with C_3H_8 . #### 4. Discussion NO_y complexes are formed on Cu/ZSM-5 and Co/ZSM-5 after saturation with NO₂. The IR spectroscopic signature, thermal stability and chemical reactivity of Cu- and Co-bonded NO_y are found to be different. Cu/ZSM-5 contains not only Cu²⁺ ions, but also [Cu-O-Cu]²⁺ oxocations and CuO oxides. Upon interaction with NO₂ Cu²⁺ ions form nitro complexes while oxocations and oxide react to nitrate complexes. On the other hand, Co/ZSM-5, which contains only Co²⁺ ions, can only form NO₂ complexes. Unlike Cu²⁺ •NO₂, these are most likely Co²⁺ •ONO nitrito complexes. Although deNO_x catalysis over both Co/ZSM-5 and Cu/ZSM-5 may be initiated in the same manner, H-abstraction, the two display a different hydrocarbon specificity; Cu/ZSM-5 requires C_{2+} olefins or C_{3+} paraffins, whereas Co/ZSM-5 is active with CH₄ and higher hydrocarbons. The type of the NO_y groups differs which may explain the differences in hydrocarbon specificity . Assuming that the activation of hydrocarbon occurs via an H-abstraction as stated by others^{3,4}, this reaction is affected by NO_y groups. While exposure to C_3H_8 leads to N_2 formation from both samples, only Co/ZSM-5 formed N_2 upon CH_4 exposure. It appears that H-abstraction from CH_4 is difficult with $Cu \cdot NO_y$ but facile with $Co \cdot NO_y$. The influence of the metal ion on the selectivity in NO reduction may be indirect by furnishing different types of NO_y . The fate of the hydrocarbon radical is not yet clear. It has been proposed that a reactive intermediate containing at least one carbon, nitrogen and oxygen atom is formed on the catalyst surface which reacts further with NO to from N_2 . The role of NO_{gas} and the nature of the reactive intermediate are currently under investigation. ## 5. Acknowledgments We would like to thank the following for grant in aid: V.N. Ipatieff Fund, Ford Motor Corporation and Engelhard Corporation. T. Beutel thanks for a stipend from the Deutsche Forschungsgemeinschaft. ¹ M. Iwamoto, Proc. of the Meeting of Catalysis Technology for the Removal of Nitrogen Monoxide, Tokyo, Japan (1990) 17. ² A.D. Cowan, R. Dümpelmann and N. W. Cant, J. Catal., 151 (1995) 356. ³ F. Witzel, G.A. Sill and W.K. Hall, J. Catal., 149 (1994) 229. ⁴ Y. Li, T.L. Slager and J.N. Armor, J. Catal., 150 (1994) 388. Fig.1: FTIR spectra of Cu/ZSM-5 (A) and Co/ZSM-5 (B) after calcination, exposure to NO + O_2 at r.t. and He purge at 200°C (A) and 150 °C (B). Graph A', the relative intensities of NO_y bands at 1628 cm⁻¹ (a), 1594 cm⁻¹ (b) and 1572 cm⁻¹ (c) in 0.25 % propane at 200 °C vs. time. Graph B'. the relative intensities of NO_y band at 1526 cm⁻¹ in 0.25 % methane (d) and 0.25 % propane (e) at 150 °C vs. time. Fig.2: N_2 evolution from Co/ZSM-5 at 150°C (b, c) and Cu/ZSM-5 at 225°C (a, d) upon interaction with CH₄ (c, d) and with propane (a, b) vs. time. Samples have been calcined, saturated with NO_2 at r. t. and outgassed at the respective reaction temperature prior to reaction.